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Abstract The discovery of structures hidden in high-dimensional data space is of
great significance for understanding and further processing of the data. Real world
datasets are often composed of multiple low dimensional patterns, the interlacement
of which may impede our ability to understand the distribution rule of the data.
Few of the existing methods focus on the detection and extraction of the manifolds
representing distinct patterns. Inspired by the nonlinear dimensionality reduction
method ISOmap, in this paper we present a novel approach called Multi-Manifold
Partition to identify the interlacing low dimensional patterns. The algorithm has
three steps: first a neighborhood graph is built to capture the intrinsic topological
structure of the input data, then the dimensional uniformity of neighboring nodes
is analyzed to discover the segments of patterns, finally the segments which are
possibly from the same low-dimensional structure are combined to obtain a global
representation of distribution rules. Experiments on synthetic data as well as real
problems are reported. The results show that this new approach to exploratory data
analysis is effective and may enhance our understanding of the data distribution.
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1 Introduction

The goal of exploratory data analysis is to present a dataset in a form that is easily
understandable, while preserving as much of the essential information in the data as
possible (Jain and Dubes 1988). There are two well known approaches to simplify
the problem and achieve the goal of illustrating hidden structures for a given dataset.
One is to reduce the number of data items, the other is to reduce the dimensionality
of the data.

Data clustering algorithms, i.e. partitional clustering and hierarchical clustering,
take the first approach to yield a data description in terms of groups of data points
that possess strong internal similarities (Duda et al. 2001). However, clustering
methods often fail to detect delicate nonlinear structures in data due to two reasons:
the neglect of intraclass topological structures and the overall usage of Euclidean
distances.

With the second approach, linear dimensionality reduction methods such as
Principal Component Analysis (PCA) (Jolliffe 1986) and Independent Component
Analysis (Hyvarinen and Oja 2000), try to reduce statistical redundancy between the
components of high dimensional data and enable a lower-dimensional representation
without significant loss of information. However, when a nonlinear problem is
involved, they always tend to overestimate the intrinsic dimensionality of the dataset.
Unlike linear dimensionality reduction methods, their nonlinear alternatives manage
to build low-dimensional representations while preserving the intrinsic geometry of
the data. Thus nonlinear methods including five-layer autoassociators (Bourlard and
Kamp 1988), ISOmap (TenenBaum et al. 2000), and Local Linear Embedding (LLE)
(Roweis and Saul 2000) are expected to identify the underlying global structures in
high dimensional input space.

The self-organizing maps (Kohonen 2001) are a special class of algorithms that can
be used to reduce the amount of data by clustering while projecting the data onto a
lower-dimensional display simultaneously. Typical applications are visualization of
process states or financial results by representing the central dependencies within
the data on the map.

Besides the nonlinearity, another cause of complexity in real world application
data is the interlacement of patterns. Interlacement impedes the discovery of global
structures and has brought a great challenge to data exploratory methods. Iden-
tification of these usually low dimensional patterns can help us obtain in-depth
knowledge of the data, and more specifically, give guidance to subsequent data
processing, e.g. dimensionality reduction and data visualization. It can also bring
great convenience to successive analysis such as feature extraction, pattern matching,
knowledge discovery, etc. Despite this significance, few of the existing methods focus
on discovering these patterns from a mass of complicated input data.

In this paper we propose a new approach called Multi-Manifold Partition (MMP)
to discover and separate manifolds which represent low dimensional patterns (or
distribution rules) in high dimensional data space. We have borrowed the same
basic ideas from ISOmap. In order to preserve the intrinsic geometry of the data,
ISOmap first computes geodesic distances along a manifold as sequences of hops
between neighboring points instead of Euclidean distances. It then applies classical
MultidimensionalyScalings(CoxgandsCoxyl 994) to the matrix of geodesic distances
to construct an embedding of the data in a low-dimensional Euclidean space. In
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the algorithm presented here, a neighborhood graph is first built to capture the
intrinsic topological structure of the input data. Then the intrinsic dimensionality
of each point is estimated based on local PCA (Fukunaga and Olsen 1971). Finally,
the neighboring nodes with uniform intrinsic dimensionality connected by the neigh-
borhood graph are united into segments of manifolds which are named as primary
structures here. (See Section 2 for a detailed definition.) Finally, combination of
the primary structures possibly from the same manifold can lead to global low-
dimensional structures (strokes), referred to as substructures afterwards.

The rest of the paper is organized as follows. In Section 2 we state the problem
of MMP and give a brief review of recently proposed dimensionality estimation
methods as well as some definitions and denotations. Section 3 specifies the pro-
posed MMP algorithm which is implemented through two major subroutines: the
primary structure searching algorithm and the primary structure joining algorithm.
In Section 4 we show some experimental results on some simulated datasets as well
as datasets derived from real world applications. Discussions are given in Section 5.
Finally, Section 6 concludes the paper.

2 Foundations of the algorithms

For a dataset formed by the interlacement of a bunch of distinct patterns, it is
interesting to discover the underlying structures which may represent easy to un-
derstand distribution rules in the data. Figure la gives an example of a mixed
structure composed of two simple substructures, namely a plane and an S-like
manifold. The plane can simply be regarded as 2D by a linear method, while a
nonlinear dimension reduction method can find the intrinsic two-dimensionality of
the manifold. In real world problems, such interlacing simple patterns can lead to
troublesome high dimensionality as their number increases. Unfortunately, even
nonlinear projection methods fail to discover the global structure, to say nothing
of identifying the distinct low-dimensional patterns. Here we face the long time
problem of intrinsic dimensionality estimation and address the novel problem of
identification of interlacing patterns. In this section, we will give a brief review of
intrinsic dimensionality estimation and the second problem will be detailed in the
next section.

2.1 Intrinsic dimensionality estimation methods

The intrinsic or topological dimensionality (ID) of a dataset in d-dimensional space
refers to the minimum number of “free” parameters needed to generate the dataset
(Jain and Dubes 1988). Knowledge of the intrinsic dimensionality is important in
order to determine the number of features necessary to represent the data. There
are mainly two primary approaches for intrinsic dimensionality estimation. The first
class of methods are global approaches which aim to analysis the global property of
the dataset. The swarm of points are unfolded or flattened in the lower dimensional
space. Methods like PCA and ISOmap belong to the class of global approaches. The
second class of methods which are called local approaches includes the methods in
Fukunaga.and.Olsen (1971).and Pettis.et.al. (1979) which try to estimate the intrinsic
dimensionality directly from information in the neighborhood of data points without
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Fig. 1 Experiment I on 3D manifolds. a A plane and a manifold in 3D space. b Normalized energy
distribution for local PCA. ¢ Primary structure searching result. d Primary structure joining result

projecting the data points to a lower dimensional space. As we have mentioned,
global approaches fail to estimate the intrinsic dimensionality of a dataset made
up of mixed patterns because of the ununiformity of dimensionalities over different
local regions. In this paper, we take a local approach, more specifically, the local
PCA—introduced in (Fukunaga and Olsen 1971) and developed by Kambhatla and
Olsen (Kambhatla and Leen 1997) and Verveer and Duin (1995), to determine
the dimensionality of the local surface a data point resides in. Recent research
on intrinsic dimensionality estimation from a local perspective can be found in
inci i and Hero 2004; Kégl 2003; Levina and Bickel
he algorithms to indicate the complexity
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The algorithm of Fukunaga and Olsen for estimating the intrinsic dimensionality
is based on PCA. It is assumed that the intrinsic dimensionality of a dataset can be
computed by dividing the dataset into small regions where the surfaces the data
points locate are approximately linear. Obviously, the denser these points the more
accurate the estimation provided by the PCA. The algorithm is divided into two
steps:

(1) Partition the data space into distinct regions. This step is usually accomplished
by vector quantization and so the method is called VOPCA;
(2) Estimate the intrinsic dimensionalities in separated local regions using PCA.

For a dataset with samples not in a uniform dimensional subspace, vector quanti-
zation may be misleading because data points at the edge of a Voronoi cell may have
dimensionalities different from those of the points in the center. Unlike VQPCA,
which attempts to find regions of low dimensionality and thus relies heavily on the
partitioning algorithm, we use local PCA to determine the dimensionality of each
data point. So in our approach, we circumvented the first step and simply build the
K nearest neighbor regions to find the intrinsic dimensionality of the surface a data
point resides in. The following section gives a more precise definition of K nearest
neighbor regions.

2.2 Definitions and denotations

This section gives some definitions and denotations of the terms used in this paper.
To make it more explicit, data points in a dataset are denoted as vectors in later
discussion.

Definition 1 (K nearest neighbor region of vector v;) Set w; = {v;, vi1, .., Vig} 1S
called the K nearest neighbor region of vector v;, (i =1, 2, .., n), where n is the
number of vectors in the dataset, and vy(/ = 1,2, .., K) denotes the /th nearest
neighbor of v;.

Definition 2 ( f dimensionality) The f dimensionality of a dataset is the smallest
dimensionality that can be used by method f to represent the dataset without too
much loss of information. The PCA dimensionality of a vector v; is defined as the
PCA dimensionality of its K nearest neighbor region w;.

Generally speaking, data obtained from real world problems are always polluted
by noises. So f dimensionality denotes the dimensionality by which method f
can represent the data without significant loss of information, that is, within some
reconstruction error criterion. The reconstruction error criterion € is usually required
to be smaller than some positive threshold near zero.

Given a dataset, different methods may find different dimensionalities. For ex-
ample, for the manifold in Fig. 1a, PCA will find a dimensionality of three while
ISOmap gives a dimensionality of two. For the K nearest neighbor region w; of
a vector v;, its PCA dimensionality equals its ISOmap dimensionality, because the
geodesic distances between pairwise points equal the Euclidean distances (Cox and
Cox 1994; TenenBaum et al. 2000). In the remainder of this paper, without special
notification, the dimensionality of a local region indicates its PCA dimensionality.
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Definition 3 (neighborhood graph) A neighborhood graph is a directed weighted
graph G = (V, E), where V is the set of vectors in the set and E is the set of edges
from arbitrary vector v; in V to the vectors in its K nearest neighbor region. The
weight of an edge is the Euclidian distance between its starting vector and ending
vector.

Two simple approaches to construct a neighborhood graph are to connect each
vector to all vectors within some fixed radius, or to all of its K nearest neighbors. In
our experiments, we take the second approach. More discussions on neighborhood
graph construction is given in Section 5.

Definition 4 (primary structure) A dataset is defined as a primary structure when it
satisfies all of the following conditions:

(1) Vectors in the set are directly connected to each other on the neighborhood
graph.

(2) PCA dimensionalities of all vectors in the set are uniform.

(3) Ttis the parent set of all the sets that satisfy the first two conditions.

A substructure is composed of one or more equal dimensional primary structures.
For example, the S-like manifold in Fig. 1c is divided into two segments, i.e. S; and
S», by the overlapping region of the plane and the manifold. Each of them is called a
primary structure, while the manifold itself is called a substructure. Evidently, S; and
S, share some common characteristics. Firstly, each of them is a connected set in a
topological sense. Secondly, the PCA dimensionalities of these two segments are no
higher than that of their parent structure—the S-like manifold.

3 Algorithms

In this section, we specify the proposed MMP algorithm, which is further divided into
two subroutines: the primary structure searching algorithm and the primary structure
joining algorithm.

3.1 Algorithm 1: primary structure searching algorithm

The main idea of the primary structure searching algorithm is: First estimate the
dimensionalities of all the vectors (i.e. the PCA dimensionalities of all K nearest
neighbor regions). Then unite the vectors that not only have the same dimensionality
but also are connected to one another on the neighborhood graph to form a
primary structure. The complete algorithm as show in Table 1 has four steps. First,
the neighborhood graph G is constructed for the input dataset V. Then, the K-nearest
neighbor regions Q = {w,, s, .., w,} are formed according to the connectivity on the
neighborhood graph. And then, the dimensionalities of regions w;, (i =1, 2, .., n)
are _estimated, here the local PCA based function is assumed. Finally, iterate the
following joining process until no elements in Q can be joined: for two arbitrary sets
; and w; (i # ]), if they have the same dimensionality and are directly connected
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Table 1 Primary structure searching algorithm

Algorithm

0 Inputs: V, K;

1 G «BuildGraph(V, K); /I graph construction

2 Q <« {w1, w2, .., wy}, wi < KNeighbor(G, v;); /I get K-nearest neighbor sets
3 d; < IntrinsicDim(w;),i=1,--- , n; // intrinsic dimension estimation
4 do

5 if d; = d; and Connected(G, v;, vj)

6 wj < wjUoj; // join two sets

7 Q <« Q—wj

8 di < d; /I preserve the dimensionality
9 end if

10 until |2| — C /l iterate until converge

11 return Q;

in G, then let w; = w; Uw; and delete w; from Q. The dimensionality of w; is
preserved.

With the primary structure searching algorithm, we can get the primary structures
which represent the segments of distribution rules in the dataset. Here we note the
set of primary structures as S = {Sy, S», .., S;}, where m is the number of primary
structures in §. Usually, the dimensionalities of the primary structures in S vary
from one to another. There is some possibility that the estimated dimensionality
of a primary structure is higher than its intrinsic dimensionality. This is potentially
caused by two factors: first, the noises in the data are too loud to be ignored
and leads to increased estimated dimensionality; second, a vector residing in the
overlapping region of two or more lower dimensional manifolds will also yield a
higher dimensionality.

3.2 Primary structures joining criteria

A real world dataset is often segmented into too many pieces by the primary structure
searching algorithm. Two causes may lead us to such an embarrassment. On one
hand, some higher dimensional primary structures are formed in overlapping regions
of two or more lower dimensional manifolds. On the other hand, a single substructure
representing a global topological structure may be separated into several parts by
the overlapping regions. Here we give an algorithm to form substructures with global
meaning. Two or more primary structures can be united into one if all of the following
conditions are satisfied:

(Rule 1) They have identical dimensionality.

(Rule 2) They are geometrically close according to some proximity measure, as
specified by the close neighbor criterion.

(Rule 3) They can be smoothly joined into one structure, as specified by the mutual

ly discuss the other two conditions.
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3.2.1 Close neighbor criterion

To illustrate the condition in Rule 2, we introduce the concept of geodesic distance
(TenenBaum et al. 2000). The geodesic distance between two vectors v; and v, noted
by ga(i, j), is the length of the shortest path from v; to v; on the neighborhood
graph G. The geometric distance between two primary structures S, and S, in S, is
define as
gd(Sp, Sq) = min _gu(v;, vj)- (1)
vieSp,vi€S,
Primary structures S, and S, are closely neighboring when g,(S,, S;) < 8, where
§ is a preset threshold parameter. Note that the appropriate § value may vary greatly
depending on the data distribution of different applications. However, the averaged
edge length of the neighborhood graph G which represents the vicinity of nearest
neighbors is a good reference to set the § parameter.

3.2.2 Mutual representation criterion

Primary structures that satisfy the first two conditions may not be simply united. Take
the dataset in Fig. 1c as an example. Although S| and §j satisfy both conditions of
Rule 1 and Rule 2, a more reasonable combination is between S; and S,. The reason
is that we intuitively tend to unite two patterns with a continuous and smooth joint.
So the third criterion is proposed to measure the smoothness of the joint.

Here, we generalize the concept of closely opposed pairs in Sklansky and Wassel
(1981). For two primary structures S, and S, a pair of vectors v;, v;, (v; € Sp, v; € S;)
are closely opposed if and only if the geodesic distance between v; and v; satisfies

dg(vi, vj) = min dg(v;, vk) = min dg (v, v)). (2)
vkeS,, U,ESI,

For two primary structures S, and S,, the set of closely opposed pairs, C, can be
obtained by calculation of geodesic distances between all pairs of vectors.

Let %; be the covariance matrix of w;, U = {uy, u,, .., u4} the associated eigenvec-
tors of the d dominate eigenvalues of X;, then the normalized reconstruction error e;,
of a vector v, can be computed as

d
Vp =y Uy
=

Hnll

: ®)

i
e, =

where ¢y, ¢, ..., cq are the corresponding coefficients of v, in the d-dimensional
eigenspace. We say w; can be linearly represented by j; if the condition

> ¢

VIEWj

<A, (4)

Y e

VpEW;

is satisfied. Note that on the left hand side
r the summed reconstruction error over
e summed reconstruction error over set
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;. When these two factors are comparative—measured by the A parameter, the two
sets probably reside in the same subspace. To be more clear, we use the averaged
reconstruction error for two primary structures to evaluate the smoothness of the
joint. Formally, the averaged reconstruction error to represent S, by S, is computed
as

1 zC:s 2 e;
w;C N g VIEW]
BTy v 4 ©

w;CCNS), vhEw;

where |C| is the cardinal number of the set of closely opposed pairs between
primary structures S, and S,. For the closely opposed pairs in C, if the averaged
reconstruction error is smaller than a preset A value, we say S, and S, satisfy the
mutual representation criterion.

3.3 Algorithm 2: primary structure joining algorithm

Before presenting the primary structure joining algorithm, we have to define the
intersecting set between two sets. Let v; and v; be two arbitrary points in V, G
the neighborhood graph built from V. Then the geodesic path between v; and vj,
noted as p; j, is the set of points along the shortest path between v; and v; on G. The
intersecting set between two sets §,, S, C V on a neighborhood graph G, noted as
S,.4- 18 the union of all the geodesic paths between all possible pairs of points which
are drawn from S, and S, respectively. Formally,

Spq = U Dij. (6)

U[ESP,UI'ES"

Intuitively, S, , are the set of points needed to connect two separated sets S, and S,
into one, where the connectivity of all the points are defined with the neighborhood
graph G. Note that S, , not only comprises the connecting points but also includes
the points in S, and S, as well. Consequently, an intersecting set may contain
points which are already associated with some primary structures and a vector in
the dataset may belong to multiple substructures returned by the primary structure
joining algorithm.

Table 2 Primary structure joining algorithm

Algorithm

0 Inputs: S = {S;},i=1,--- ,m;

1 do

2 if Rule123(S,,S;) = true,VS,, Sy /I qualified sets exist

3 S—8—-8;,-8p;

4 S <~ SUSyq

5 dpg < dp; /I preserve the dimensionality
6 end if

// iterate until converge
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With the definition of the joining conditions and the concept of intersecting set,
we can present the following primary structure joining algorithm as listed Table 2.
For the set of the primary structures S, iterate the following joining process until no
more sets can be joined: Let S, ;, denote the intersecting set of primary structures S,
and §,. For two sets S, and S, which satisfy Rule 1 through Rule 3, remove S, and
S, from S and put S, 4 into S. The dimensionality of S, is used for S, ,.

4 Experiments

In this section, we test the proposed algorithm through a series of experiments. The
application to both simulated datasets as well as datasets sampled from real world
problems are demonstrated.

4.1 Computations

In order to use local PCA for dimensionality estimation we must eventually decide
how many dominant eigenvalues exist in each local region, i.e. the threshold an
eigenvalue obtained by each local PCA must exceed to indicate an associated intra-
surface eigenvector. We adopted the D« criterion from Fukunaga and Olsen (1971),
which regards an eigenvalue y; as significant if

M a%. (7)
mj;lx(# 7

If no prior knowledge is available, different values of « have to be tested. Otherwise,
knowledge of the largest noise component can be used to calculate «. In the
experiments, we chose oy = ap = a4 = 20, w3 = 10 as the threshold to determine the
dimensionalities of the local regions. And in all the three experiments, the threshold
A involved in primary structures joining algorithm is set to 2.

The number of nearest neighbors to generate the neighborhood graph and to form
the vicinity set for local PCA based intrinsic dimensionality estimation, K, is set to
K, =K, =K4=17,and K3 =11 in the experiments. Some discussions on how to
select this parameter is given in the discussion section. The § parameter for the close
neighbor criterion is set to 5 times the averaged edge length of G for all the evaluated
datasets.

4.2 Experiment I

The dataset for experiment 1 is shown in Fig. 1a. The dataset contains two interlacing
substructures in the 3D space: a 2D plane and an S-like manifold. The dataset is
sampled from the manifolds with added Gaussian noise.

Figure 1b shows the normalized variance distributions in the directions of prin-
cipal components of local regions. In the figure, the abscissa is the index of the
vectors and the ordinate shows the normalized distribution of energy in local PCA
eigenspaces. All the eigenvalues of each local region are normalized so that they
sum up to 1. Distinct gray levels, from bottom to top, denote the relative energy
contribution in the direction of the sorted dominant principal components for the
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eigenspace. For almost all of the vectors, 1D projections can preserve only about
50% of their energy (white region in the figure); a majority of the vectors can be
represented as 2D vectors by the first two eigenvectors with more than 95% of
their energy preserved (white and gray regions in the figure); a few of the vectors
have to be represented by 3D vectors to preserve a dominating part of their energy.
According to the fact that most of the K nearest neighbor regions can be represented
as 2D vectors by the local eigenvectors without much reconstruction error, local
PCA returns the estimated dimensionality for these vectors as 2, and that of the rest
vectors as 3.

Figure 1c shows the result of the primary structure searching algorithm by joining
vectors with the same estimated dimensionality and are directly connected on the
neighborhood graph G. Different primary structures extracted by the algorithm are
shown as points with different markers and gray levels in the figure. Three 2D
primary structures are labelled as S, S; and S3, while the dimensionality of the
black points is 3. It can be seen from the figure that, with the primary structure
searching algorithm, the primary structures are correctly identified, though S; and
S, are separated by the overlapping region of the two manifolds.

To apply the primary structure joining algorithm, the averaged reconstruction
error E'—reconstructing the closely neighboring K nearest neighbor regions in
S; by those in S;—should be estimated. For the primary structures in experiment
I, the averaged self reconstruction error E| = 0.0355, while the error using §; to
reconstruct the remaining primary structures are E) = 0.0417 and E} = 1.336. Thus
by setting the A =2, §; and S, are joined into one global substructure i.e. the S-like
manifold. Because the reconstruction errors E} = 1.336 and E3 = 1.511 are far more
larger than El, S, , and S; can not be ]orned into one. The resultant substructures
by joining the primary structures are shown in Fig. 1d. In the figure, S, and S, are
joined to form the S-like manifold. As a post processing step, the vectors on the
shortest paths connecting two arbitrary points in a substructure are assigned to the
substructure.

4.3 Experiment 11

In this experiment, we show the application of the proposed algorithm to analyze
some 2D datasets. The datasets are sampled from interlacing curves in the 2D
space. Points are represented as 2D vectors. At first, the primary structure searching
algorithm is applied to identify the segments of curves. Then, the primary structure
joining algorithm is used to discover the underlying global substructures.

The first dataset as shown in Fig. 2a-1 is drawn from interlacing straight lines.
The data are subject to uniform distribution along the lines, with Gaussian noise
added. Figure 2b-1 shows the normalized variance distributions in the directions
of principal components of local regions. It can be found from the figure that for
most of the vectors, the first eigenvalue for the local PCAs holds almost all the
variance in the distribution. So that the estimated dimensionality for these vectors
is 1. For the remaining vectors, the second eigenvalue is significant and the estimated
dimensionality should be 2. In Fig. 2¢-1, the 1D vectors are connected by the primary
structure searching algorithm to form a number of primary structures which are
presented by different markers. The 2D vectors with their nearest neighbors are
shown as dark points in the figure. It is interesting to see that all these vectors fall
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at the crossing point of the lines. Because vectors from multiple lines fall in their
neighborhood, 2 dimensional subspaces are formed in the local regions. Then, the
primary structure joining algorithm is applied to connect the primary structures from
the same substructure. Apparently, in this case the underlining substructures are the
line segments. To evaluate the mutual representation criterion, the reconstruction
error between primary substructures are computed. For two primary structures from
the same line segment, e.g. S and S, in the figure, the relative reconstruction error is
around 1 (E} = 1.03E} ). For two primary structures from different line segments,
the error is much higher. For the case of §; and Ss, E} =35.7E|. In Fig. 2d-1,
the joined substructures are shown. As expected, the substructures as represented
by different markers are separated from each other. A following linear regression
methods can be applied to further analyze the straight lines respectively.

The second dataset, shown in Fig. 2a-2, is drawn from multiple circles which are
interlacing with each other in the 2D space. The data are distributed uniformly
along the curves, with Gaussian noises added. Following the procedure for the first
dataset, first see Fig. 2b-2 for the normalized variance distributions in the directions
of principal components of local regions. Similar as the first dataset, for most of the
vectors the estimated dimensionality is 1 and for the remaining vectors, the estimated
dimensionality is 2. Then we can connect the directly connected 1D vectors on the
neighborhood graph to form the primary structures. In Fig. 2c-2, the results of the
primary structure searching algorithm is shown with different primary structures
presented by different markers. Again, 2D vectors are formed at the crossing point
of curves. This can prove the robustness of the local PCA method: by taking the
local approach, the algorithm is adaptable to nonlinear problems which show linear
property within local regions. Some interesting things different from the former
dataset can be noticed in the figure. Although not separated by overlapping regions,
the primary structures S;, S», and S3 which are sampled from the same circle are
separated from each other. This is because that the three primary structures are not
connected on the neighborhood graph G. There are two possible reasons: first, the
K parameter to build G may be too small for the dataset; second, some clusters
with comparatively small inter-cluster distances are formed. It can be found in the
figure that the K parameter works well for the rest part of the data in this example,
the problem is probably caused by isolated clusters. In Fig. 2d-2, the result of the
primary structure joining algorithm is shown. Similar as the former example, primary
structures which are from the same structures (the circles) are assigned correctly.
Despite of the clusters, the algorithm successfully unites S;, S,, and S3 into one
substructure. In fact, the problem caused by the isolated clusters seems somewhat
easier than that caused by the crossing points: the reconstruction error between
S1 and Sy is E}1 = 1.87E}, while the reconstruction error between S; and S, is
E} = 1.35E].

While the first two datasets consist of multiple substructures, the third dataset is
drawn from one smooth structure which is called a knot in the 3D space. Generally,
a knot does not cross itself in the 3D space, so here we analyze the 2D projection
of a knot structure as shown in Fig. 2a-3. In Fig. 2b-3, the normalized variance
distributions in the local PCA regions are shown. From the variance distributions,
we can judge that for most of the vectors the estimated dimensionality is 1 and for
the remaining vectors it is 2. In Fig. 2¢-3, the result of the primary structure searching
algorithm is shown. Although the data are along the same curve, it is divided into
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multiple primary structures by the crossing points. The estimated dimensionality of
the crossing points (noted as dark points in the figure) is 2. Then the primary structure
joining algorithm is applied to the primary structures to get the global substructure.
The resultant substructure is shown in Fig. 4d-3. As expected, the whole knot curve
is the only substructure returned as the result. Although primary structures S, and Sy
in Fig. 2¢-3 are not directly connected because the reconstruction error E} = 23.3E}
is much larger than the threshold of the mutual representation criterion, they are
indirectly connected through S5 to form a continuous substructure.

4.4 Experiment 111

In Experiment I and II, we have demonstrated the application of the proposed
algorithm to simulated datasets. The local PCA method gives a stable estimation
of the dimensionality of the local neighborhood regions in spite of the added noises.
The joining algorithm succeeded in combining primary structures which are drawn
from the same underlining substructure. In the following, we test the algorithm on
two datasets collected from real world applications.

The dataset in Experiment III consists of face images under different illumination
and orientation conditions. Figure 3a shows some prototypes from the images group
A, sampled from a rotating 3D face model with a fixed illumination environment
and no occurrence of shadows. It includes 3721 images sampled uniformly over
the feature space. Figure 2b shows some prototypes from image group B sampled
from the same 3D face model. It contains a series of 181 images sampled during the
procedure that a light source scans from left to right on the 3D model with a fixed
posture. All of the images in these two groups are 64 x 64 in size and are converted
to 4096D vectors as the system input.

Figure 3c shows the normalized variance distributions of local PCA regions. The
arrow in the figure marks the divide of the two groups. It can be seen from the
figure that, although the variance distribution is not as simple as the 2D cases,
for the majority of the vectors in group A, the first two eigenvalues are much
larger than the others that the PCA dimensionality of these vectors is 2. For the
vectors in group A, the first eigenvalue is so significant that they can be treated as
vectors of dimensionality 1. Other remaining vectors are assigned with a much higher
dimensionality.

Figure 3d shows the result of the primary structure searching algorithm. For better
visualization, we use ISOmap to project the dataset into a 2D embedding space.
The substructure are shown as points of different markers. The prototypes shown
in Fig. 3a and b are labelled as circles, with some of the corresponding images placed
beside. In the figure, the dark gray points denote images belonging to two 1D primary
structures. A light gray point denotes an image from a 2D primary structure. The
remaining vectors with higher dimensionalities are marked as black points. From
this example, it is easy to know that visualizing high dimensional datasets is not
an easy task even with some advanced nonlinear manifold learning tools: Although
these tools can help us to see the data in the 2D embedding space with a better
understanding of the data distribution, the interlacing of the structures does impede
further analysis of the data.

In Figs. 3e and f, the identified two substructures by the primary structure joining
algorithm are shown respectively. The two substructures are projected into the 2D
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space by ISOmap to ease the observation. In Fig. 3e, the substructure with a di-
mensionality of 2 is shown. This substructure mainly includes the images in group
A, marked as gray points. Some of the images in group B marked as dark points
are also included, because these points are along the shortest paths between points
within the substructure. Figure 3f shows the 1D substructure in the 2D space. The
substructure does not form a perfect line in the embedding space because of a small
residual error. In addition to the gray points which are from image group B, some
images from group A are also included in the substructure for they are on the shortest
paths connecting the two separated primary structures. Comparing Fig. 3e and 3f with
Fig. 3d, we can see that, by identifying the independent substructures in the dataset
we can further enhance the understanding of the data distribution. Application of
the manifold learning tools like LLE and ISOmap to the substructures will lead to
simplified model of the data distribution. For this dataset, the 2D substructure can be
modelled as a plane while the 1D structure can be analyzed using a curve fitting tool.

4.5 Experiment [V

In experiment IV, the proposed algorithm is evaluated by datasets with high level of
noises, namely the handwritten digits and Chinese characters collected by a writing
pad. Chinese characters are composed of elements called strokes. There are over 20
stroke patterns in frequently used characters. The shape and relative positioning of
the strokes differentiate one character from others. Thus, strokes serve as the basic
unit of Chinese character writing and stroke extraction is an essential preprocessing
step for (optical) Chinese character recognition. However, for application where the
time frame information is not available, interlacing of strokes always impedes our
analysis (Chang and Wang 1994; Zeng and Liu 2006). In this experiment, we apply
the proposed algorithm to solve stroke extraction problems.

The writing pad captures four features during the process a character is written on
the pad: x and y coordinates of the pen, the time frame, and the exerted pressure.
Here we only use the first two features as the input to the algorithm, thus the
algorithm works in off-line mode with 2D input vectors. Some selected samples of
handwritten Chinese characters and digits are shown in Fig. 4a. Each dataset consists
of points collected during the writing of an individual character. It can be learned
from the figure that the interlacing of strokes are very frequent for the Chinese
characters. Note that loud noises are caused by manual input.

Figure 4b, ¢, and d give the variance distributions of local PCA analysis for “qing”,
“wei” and “8” respectively. (The illustration for “4” is omitted for brevity.) From the
energy distribution we can see that though loud noises are present, the local PCA
can give a robust estimation of the dimensionality of local neighborhood regions.
The dimensionality of a small part of the points is 2 while most of the points are with
dimensionality of 1.

Figure 4e shows the extracted primary structures. For clarity, the 2D points are
omitted from the figure. Comparing the characters in Fig. 4a we can see that, the
points in the interlacing regions of strokes are identified as 2D points. Points at the
smooth turnings, e.g. the stroke turning at the top right corner of “wei” which is
smoothly transited, are identified as 1D points. Points at some sudden turnings, e.g.
the ending hook of the referred stroke of “wei” and the bottom left corner of “4”,
have a dimensionality of 2.
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Then we can apply the primary structure joining algorithm to the primary struc-
tures denoting segments of strokes. Figure 4f presents the result of the algorithm.
Stroke segments are integrated to strokes which constitute the characters. Except the
ending points of some difficult strokes are dropped, the proposed MMP algorithm
has given a quite good answer to the stroke extraction task. With an appropriate
postprocessing algorithm to deal with the omitted ending points, MMP can be
expected to serve as a preprocessing subsystem for a character recognition system.

5 Discussions

In this section we give some discussions on the implementation of the MMP
algorithm.

f dimensionality Fukunaga and Olsen (1971) assumed that the intrinsic dimen-
sionality of a dataset can be computed by dividing the set into small regions where the
surfaces the vectors reside in are approximately linear. The intrinsic dimensionality is
defined as the number of normalized eigenvalues that are larger than some threshold.
Verveer and Duin have given a discussion in detail on this issue and proposed an
improved method to estimate the dimensionality in Verveer and Duin (1995). In our
implementation, we mainly follow the formulation in Fukunaga and Olsen (1971).

Construction of a neighborhood graph The choice of an appropriate number
of nearest neighbors is critical to the algorithms we have presented and it is also
an important problem in local PCA. With too few vectors in a local region, local
PCA will not be a reasonable method to estimate the local dimensionality while
too large a region size will lead to overestimation of the intrinsic dimensionality
due to nonlinearity. While experiments show that for low dimensional manifolds,
the number of neighboring vectors K is relatively small, theoretically little is known
(Bruske and Sommer 1998). Our algorithm is base on the following assumptions:

(1) The number of nearest neighbors, K, is much greater than the intrinsic dimen-
sionality of the local subspace that a vector resides in. This condition guarantees
the effectiveness of local PCA.

(2) K is much smaller than the number of vectors in the dataset to make sure the
local linearity condition is satisfied.

With these assumptions, we can get an efficient intrinsic dimensionality estimator
which is a precondition for the primary structure searching and joining algorithms.
Our experiments show that, although selection of appropriate K parameter is
essential to the performance of MMP, a fairly wide value range with comparatively
good results exists.

Noises Real data are always noisy and hence samples stemming from some low
dimensional hypersurface will always contain noise orthogonal to the surface. Yet
if the local region and the noises are small enough to support the linear assump-
tion, local PCA will get the intrinsic dimensionality by identifying the dominating
eigenvalues (Bruske and Sommer 1998). Some other works on intrinsic dimension-
ality are reported to be robust against noises (Kégl 2003; Raginsky and Lazebnik
2006). Incorporating these methods to the data analysis system will be explored in
future work.
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Computation costs The PCA of the n x n covariance matrix can be calculated in
O(n?). The computation cost of local PCA of all the K nearest neighbor regions is
O(n - K3). When K = n?/3, the computation costs are comparative, but generally,
K is much smaller than n and our approach will outperform global PCA for
dimensionality estimation of overall vectors.

The Dijkstra algorithm (Cormen et al. 1994) is used to compute the graph distance
between pairwise vectors. The time complexity of this algorithm is O(n*). More
efficient algorithms exploiting the sparse structure of the neighborhood graph can
be found in Kumar et al. (1997).

From local scale to global scale Generally, the proposed primary structures joining
algorithm can connect a number of primary structures with uniform dimensionality to
a substructure of identical dimensionality which represents a underlying pattern. In
some specific cases, connected segments may form end to end structures, e.g. curves
can form circles and 2D manifolds may form sphere surfaces, and lead to increased
complexity to the resultant substructure. However, such structures are still relatively
simple and still meet our original intention to promote the data analysis.

6 Conclusions

In this paper, we have presented a novel approach named MMP to solve the problem
of identifying topological structures for high dimensional data. The algorithm is
implemented through the following steps. First, a neighborhood graph is built to
capture the intrinsic topological structure of the input data. Second, the intrinsic
dimensionality of a single point is estimated based on local Principle Component
Analysis of its neighborhood regions and the neighboring nodes with uniform
dimensionality are connected to form primary structures representing segments of
distinct manifolds. Finally, combinations of the primary structures that are possibly
from the same pattern leads to underlying global substructures which represents the
distribution rules of the dataset.

Previous approaches to identify topological structures, say, clustering and the
projection methods, can do well in cases where only a single global pattern is involved
or delicate distribution rules are not considered respectively. When we need further
knowledge about the structure of the data, our approach can be engaged to identify
the underlying substructures which are ready for further analysis.

Anyway, data acquired from a real world problem may be so complex that all three
approaches should all be involved. They may serve at different steps or at different
scales to examine the data to gain in depth knowledge of the data distribution.
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